An FFT extension to the $P-1$ factoring algorithm

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Algorithm for Factoring Polynomials over Algebraic Extension Field

An efficient algorithm is presented for factoring polynomials over an algebraic extension field. The extension field is defined by a polynomial ring modulo a maximal ideal. If the ideal is given by its Gröbner basis, no extra Gröbner basis computation is needed for factoring a polynomial over the extension field. We will only use linear algebra to get a polynomial over the base field by a gener...

متن کامل

An algorithm for factoring integers

We propose an algorithm for factoring a composite number. The method seems new.

متن کامل

An Efficient Extension of Network Simplex Algorithm

In this paper, an efficient extension of network simplex algorithm is presented. In static scheduling problem, where there is no change in situation, the challenge is that the large problems can be solved in a short time. In this paper, the Static Scheduling problem of Automated Guided Vehicles in container terminal is solved by Network Simplex Algorithm (NSA) and NSA+, which extended the stand...

متن کامل

p-YDS Algorithm: An Optimal Extension of YDS Algorithm to Minimize Expected Energy

The YDS algorithm computes a schedule on a DVS-enabled resource to meet deadlines of all jobs and optimally minimize the total energy consumption. The algorithm requires that an exact execution time of each job be known. For settings where execution times are variable or uncertain, stochastic scheduling has been proposed to preferentially accelerate less probable phases of jobs to reduce the ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1990

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-1990-1011444-3